&)

Linux Academy

Certified Kubernetes
Application Developer

(CKAD) Study Guide

March 28, 2019

mailto:willb@linuxacademy.com

Contents

Core Concepts
Kubernetes API Primitives e
Creating Pods L e e
NAMESPACES v v ot e e e e e e e e e e e e e e e e e e e

Basic Container Configuration e

Configuration
ConfigMaps e e e e e e e
SecurityContexts e e e e e e e e e e e e
Resource Requirements e e e e e e e e e e
SECretS e e e e

SEerviceACCOUNTS o o e e e e e e e e e e e e e e e e e e e

Multi-Container Pods

Observability
Liveness and Readiness Probes
Container Logging o i e e e e e e e e e
Monitoring Applications L e e
Debugging e e e e e e e
kubectlget e e e
kubectl describe L
kubectllogs L e e e

kubectl edit e e e e e e e e

Export objectyaml

kubectlapply o e

Pod Design
Labels, Selectors, and Annotations e e e e e
Deployments e e e e e e e e e e e
Rolling Updates and Rollbacks e

Jobsand Cronjobs e e e e e e

Services and Networking
SEIVICES . . . o e e e e
ServiCe typesS o e e e e e e e e e e e e e e
NetworkPolicies e e e
Ingressrules e e e e e e
Egressrules e e e e e

Toand From Selectors e e e e e e e e e e

State Persistence
VOolUMES . . o o e e e e e e e e
PersistentVolumes and PersistentVolumeClaims
PersistentVolumes e e e
PersistentVolumeClaims e e

Use a PersistentVolumeClaiminaPod i

15

15

16

17

18

20

20

20

21

22

22

22

22

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Core Concepts

Kubernetes API Primitives

Documentation:
» Kubernetes Objects

Kubernetes API Primitives are called “Kubernetes Objects” in the documentation.

They are data objects that define the state of the cluster. Each object has a spec and a status. * Spec -
defines the desired state. * Status - describes the current state.

kubectl get returns a list of object types available to the cluster.

Define an object’s spec in the form of yaml data, for use for creating and modify objects.
Obtain the spec and status with commands like kubectl describe:

kubectl describe $object_type $object_name

You can also get information about an object with kubectl get:

kubectl get S$Sobject_type $object_name

Add the -o yaml flag to get the data in yaml| format.

Creating Pods

Documentation:
* Pod Overview

Pod: A collection of one or more containers and their shared resources.

One way to create Kubernetes objects, such as pods, is to define the object spec in a yaml file. For exam-
ple:

my-pod.yml:

apiVersion: vl

kind: Pod

metadata:
name: my-pod
labels:

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

app: myapp
spec:
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600']

Create an object from a yaml definition file with kubectl create -f my-pod.yml.

After an object is created, alter it by changing the yaml file and using kubectl apply -f my-pod.yml.

Editing objects directly is possible, with kubectl edit $object_type $object_name.

Namespaces

Documentation:
* Namespaces

Most Kubernetes objects reside in namespaces.
Assign an object to a specific namespace using the object metadata.

For example, my-pod.ym1l:

apiVersion: vl
kind: Pod
metadata:
name: my-pod
namespace: my-namespace
labels:
app: myapp
spec:
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600']

When working with objects using kubectl, specify the namespace with the -n flag:
kubectl get pods -n my-namespace

Whenever a namespace is not specified, the cluster will assume the default namespace.

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Certified Kubernetes Application Developer (CKAD) Study Guide

Linux Academy

Basic Container Configuration

Documentation:
* Define a Command and Arguments for a Container

There are various ways of configuring containers within a Pod specification:

Use command to specify the command that will be used to execute the container:

apiVersion: vl
kind: Pod
metadata:

name: my-command-pod

labels:
app: myapp

spec:

containers:

- name: myapp-container
image: busybox
command: ['echo']

restartPolicy: Never

Use args to specify any custom arguments that will be used to execute the container:

apiVersion: vl
kind: Pod
metadata:

name: my-args-pod

labels:
app: myapp

spec:

containers:

- name: myapp-container
image: busybox
command: ['echo']
args: ['This is my custom argument']

restartPolicy: Never

Use containerPort to expose ports to the cluster:

apiVersion: vl
kind: Pod
metadata:

https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

name: my-containerport-pod
labels:
app: myapp
spec:
containers:
- name: myapp-container
image: nginx
ports:
- containerPort: 80

Configuration
ConfigMaps

Documentation:
+ Configure a Pod to Use a ConfigMap
ConfigMap: Kubernetes Object that contains key-value data for use in configuring containers:

apiVersion: vl
kind: ConfigMap
metadata:
name: my-config-map
data:
myKey: myValue
anotherKey: anotherValue

Add ConfigMap data to a pod as an environment variable:

apiVersion: vl
kind: Pod
metadata:

name: my-configmap-pod

spec:

containers:

- name: myapp-container
image: busybox
command: ['sh', '-c', "echo $(MY_VAR) && sleep 3600"]
env:

- name: MY_VAR
valueFrom:
configMapKeyRef:

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

name: my-config-map
key: myKey

Add ConfigMap data to a pod as a mounted volume:

apiVersion: vl
kind: Pod
metadata:
name: my-configmap-volume-pod
spec:
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', 'ls /etc/config && sleep 3600']
volumeMounts:
- name: config-volume
mountPath: /etc/config
volumes:
- name: config-volume
configMap:
name: myConfigMap

SecurityContexts

Documentation:
» Configure a Security Context for a Pod or Container
Use a pod's securityContext to specify particular OS-level privileges and permissions for a pod:

apiVersion: vl
kind: Pod
metadata:
name: my-securitycontext-pod
spec:
securityContext:
runAsUser: 2000
fsGroup: 3000
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', "echo Hello Kubernetes! && sleep 3600"]

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Resource Requirements

Documentation:

* Resource requests and limits of Pod and Container

* Resource request: The amount of resources a container needs to run - Kubernetes uses these values
to determine whether or a not a worker node has enough resources available to run a pod.

* Resource limit: The maximum resource usage of a container - The container run time will try to
prevent the container from exceeding this amount of resource usage.

You can specify resource requests and limits in the container spec:

apiVersion: vl
kind: Pod
metadata:

name: my-resource-pod

spec:

containers:

- name: myapp-container
image: busybox
command: ['sh', '-c',
resources:

requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"

Secrets

Documentation:

« Secrets

'echo Hello Kubernetes! && sleep 3600']

Secret: A Kubernetes object that stores sensitive data, such as password, keys, or tokens.

Create a secret:

apiVersion: vl
kind: Secret
metadata:

name: my-secret
stringData:

myKey: myPassword

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/secret/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Use secret data in a container as an environment variable:

apiVersion: vl
kind: Pod
metadata:

name: my-secret-pod

spec:

containers:

- name: myapp-container
image: busybox
command: ['sh', '-c', "echo Hello, Kubernetes! && sleep 3600"]
env:

- name: MY_PASSWORD
valueFrom:
secretKeyRef:
name: my-secret
key: myKey

ServiceAccounts

Documentation:

* Managing Service Accounts

+ Configure Service Accounts for Pods

ServiceAccounts are used for allowing pods to interact with the Kubernetes API, and for controlling what
those pods have access to do using the APL. Specify the service account that a pod will use, when inter-
acting with the Kubernetes API, using the serviceAccountName attribute in the pod spec:

apiVersion: vl
kind: Pod
metadata:
name: my-serviceaccount-pod
spec:
serviceAccountName: my-serviceaccount
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', "echo Hello, Kubernetes! && sleep 3600"]

Multi-Container Pods

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Understanding Multi-Container Pods

Documentation:

+ Using a sidecar container with the logging agent
+ Communicate Between Containers in the Same Pod Using a Shared Volume

* The Distributed System ToolKit: Patterns for Composite Containers

Multi-container pods are pods that have more than one container. Creating them is as simple as listing
multiple containers under the containers section of the pod spec.

Containers within a pod can interact with each other in vari-
ous ways:

* Network: Containers can access any listening ports on containers within the same pod, even if
those ports are not exposed outside the pod.

+ Shared Storage Volumes: Containers in the same pod can be given the same mounted storage
volumes, which allows them to interact with the same files.

+ Shared Process Namespace: Process namespace sharing can be enabled by setting shareProcessNamespace
true in the pod spec. This allows containers within the pod to interact with, and signal, one an-
other’s processes.

Some common design patterns for multi-container pods are:

Ambassador: An haproxy ambassador container receives network traffic and forwards it to the main
container. Example: An ambassador container listens on a custom port, and forwards the traffic to the
main container’s hard-coded port.

A concrete example would be a configmap storing the haproxy config. Haproxy will listen on port 80 and
forward the traffic to the main container, which is hard-coded to listen on port 8775:

apiVersion: vl
kind: ConfigMap
metadata:
name: haproxy-sidecar-config
data:
haproxy.cfg: |-
global
daemon
maxconn 256

defaults

https://kubernetes.io/docs/concepts/cluster-administration/logging/#using-a-sidecar-container-with-the-logging-agent
https://kubernetes.io/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/
https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

mode http

timeout connect 5000ms
timeout client 50000ms
timeout server 50000ms

listen http-in
bind *:80
server serverl 127.0.0.1:8775 maxconn 32

Pod definition for the pod, which implements the ambassador model:

apiVersion: vl
kind: Pod
metadata:
name: fruit-service
spec:
containers:
- name: legacy-fruit-service
image: linuxacademycontent/legacy-fruit-service:1
- name: haproxy-sidecar
image: haproxy:1.7
ports:
- containerPort: 80
volumeMounts:
- name: config-volume
mountPath: /usr/local/etc/haproxy
volumes:
- name: config-volume
configMap:
name: haproxy-sidecar-config

Sidecar: A sidecar container enhances the main container in some way, adding functionality to it. Exam-
ple: a sidecar periodically syncs files in a webserver container’s file system from a Git repository.

Adapter: An adapter container transforms the output of the main container. Example: An adapter con-
tainer reads log output from the main container and transforms it.

A concrete example is a main container mounting /var/log as a shared volume. An adapter container
running fluentd also mounts this same volume, and is able to read all log output from the main container.
A configmap provides the configuration for fluentd. Fluentd reads the main container’s logs, transforms
them, and writes the transformed output to a separate storage volume.

Fluentd config, stored in a ConfigMap:

apiVersion: vl
kind: ConfigMap

Certified Kubernetes Application Developer (CKAD) Study Guide

Linux Academy

metadata:
name: fluentd-config
data:
fluentd.conf: |
<source>
type tail
format none
path /var/log/1.log
pos_file /var/log/1l.log.pos
tag count.formatl
</source>

<source>
type tail
format none
path /var/log/2.log
pos_file /var/log/2.log.pos
tag count.format2

</source>

<match #*x>
@type file
path /var/logout/count
time_slice_format %Y%mo%d%H%M%S
flush_interval 5s
log_level trace

</match>

Pod config, implementing the adapter model:

apiVersion: vl
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox
args:
- /bin/sh
- -cC
->
i=0;
while true;
do
echo "$i: $(date)" >> /var/log/l.log;
echo "$(date) INFO $i" >> /var/log/2.log;

10

Certified Kubernetes Application Developer (CKAD) Study Guide

Linux Academy

i=$((i+1));
sleep 1;
done
volumeMounts:
- name: varlog
mountPath: /var/log
name: count-agent
image: k8s.gcr.io/fluentd-gcp:1.30
env:
- name: FLUENTD_ARGS
value: -c /etc/fluentd-config/fluentd.conf
volumeMounts:
- name: varlog
mountPath: /var/log
- name: config-volume
mountPath: /etc/fluentd-config
- name: logout
mountPath: /var/logout

volumes:

name: varlog
emptyDir: {}
name: config-volume
configMap:
name: fluentd-config
name: logout
hostPath:
path: /home/cloud_user/log_output

Observability

Liveness and Readiness Probes

Documentation:

» Container probes

» Configure Liveness and Readiness Probes

Liveness probe: Determines whether the container is running properly - When a liveness probe fails, the

container will be shut down or restarted, depending on its RestartPolicy.

Readiness Probe: Determines whether the container is ready to serve requests - Requests will not be
forwarded to the container until the readiness probe succeeds.

Create liveness and readiness probes including them in the pod spec.

11

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Here is a liveness probe that runs a command in order to determine whether the container is running
properly:

apiVersion: vl
kind: Pod
metadata:
name: my-liveness-pod
spec:
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', "echo Hello, Kubernetes! && sleep 3600"]
livenessProbe:
exec:
command:
- echo
- testing
initialDelaySeconds: 5
periodSeconds: 5

This pod includes a readiness probe that makes an http request to determine readiness:

apiVersion: vl
kind: Pod
metadata:
name: my-readiness-pod
spec:
containers:
- name: myapp-container
image: nginx
readinessProbe:

httpGet:
path: /
port: 80

initialDelaySeconds: 5
periodSeconds: 5

Container Logging

Documentation:
* Logging Architecture

Access container logs using the kubectl logs command:

12

https://kubernetes.io/docs/concepts/cluster-administration/logging/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

kubectl logs <pod name> -c <container name>

Note: If the pod only has one container, omit the -c <container name>.

Manipulated and/or redirect the output of kubectl logs to a file using normal command-line techniques:

kubectl logs <pod name> > /path/to/output.log

Monitoring Applications

Documentation:

* Tools for Monitoring Resources
List resource usage for all pods in the default namespace:
kubectl top pods
List resource usage for a specific pod:
kubectl top pod resource-consumer-big
For pods in a specific namespace:
kubectl top pods -n kube-system
Get resource usage for nodes:
kubectl top nodes
Debugging
Documentation:

* Troubleshoot Applications
» Debug Pods and ReplicationControllers

* Debug Services

To debug in Kubernetes and locate a problem, you need to know how to explore the cluster and find
information about objects. Then you'll need to know how to edit objects in order to fix the problem.

13

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

kubectl get

Use kubectl get to list objects, for example: kubectl get pods.
You can also list other object types, i.e. kubectl get deployments, kubectl get services.
kubectl get provides the STATUS and READY information for pods, a good way to spot problems!

Don't forget to use the -n flag to explore different namespaces, because the problem may not be in
the default namespace. If you're not sure what namespaces are present in clusters, do kubectl get
namespaces.

You can also use the --all-namespaces flag, like this: kubectl get pods --all-namespaces. It lists ob-
jects from all namespaces, which is very useful for finding problems quickly if you don’t know what names-
pace to look in.

kubectl describe

Use kubectl describe to get more information on a specific object. If you see a pod with a bad STATUS,
do a kubectl describe pod <pod name> on that pod to find out what is wrong.

kubectl logs

Sometimes something goes wrong inside the container, and kubectl describe does not provide enough
information to find out what is wrong. Use kubectl logs <pod name> to get the container logs.

If the pod has multiple containers, you will need to specify which container to get logs from with kubectl
logs <pod name> -c <container name>.

kubectl| edit

Once you find an object with a problem, you may need to edit the object. You can use kubectl edit to
make changes to the object using the default editor, like this: kubectl edit pod <pod name>.

Export object yami

kubectl edit may notworkin all situations, such as when you need to change values that can't be edited
once the object is initialized. In these cases, you may need to delete and re-create the object. It is a good
idea to back up the yaml definition before deleting the object, so that you can fix it and then re-create
it later. Do this with the -o yaml --export flags: kubectl get <object type> <object name> -o yaml
-—export.

kubectl apply

When there is a yaml descriptor file for the object, this changes the file and re-applies it: kubectl apply
-f <file>.

14

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Pod Design

Labels, Selectors, and Annotations

Documentation:

* Labels and Selectors

« Annotations

Label: Key-value object metadata used to identify, select, and group objects
Apply labels using the metadata. labels attribute:

apiVersion: vl

kind: Pod

metadata:

name: my-production-label-pod
labels:

app: my-app
environment: production
spec:
containers:
- name: nginx
image: nginx

Selector: Used to select a group of objects using labels

Use selectors with kubectl get -1 to get selected objects. For example:
kubectl get -1 app=my-app

Equality-based selectors: app=my-app, environment!=production
Set-based selectors: environment in (development,production)
Chain multiple selectors in a comma-delimited list: app=my-app,environment=production

Annotation: Key-value object metadata, but cannot be used to identify objects and cannot be used in a
selector

Apply annotations using the metadata.annotations attribute:

apiVersion: vl

15

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

kind: Pod
metadata:
name: my-annotation-pod
annotations:
owner: terry@linuxacademy.com
git-commit: bdab0Oc6
spec:
containers:
- name: nginx
image: nginx

Deployments

Documentation:
* Deployments

Deployment: Defines a desired state for a set of replica pods, and works to maintain that state by creating,
removing, and modifying those pods

An example of a deployment:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80

+ spec.replicas: The number of replica pods
+ spec.template: A template pod descriptor which defines the pods which will be created

+ spec.selector The deployment will manage all pods whose labels match this selector. When creat-
ing a deployment, make sure the selector matches the pods on the template!

16

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Rolling Updates and Rollbacks

Documentation:

» Updating a Deployment

* Rolling Back a Deployment

Rolling update: Gradually rolling out a change to a set of replica pods to avoid downtime

This is how you can perform a rolling update using a deployment:
kubectl set image deployment/<deployment name> <container name>=<image name> --record

This sets the image for the deployment to the value specified for <image name>.

--record records the changes made during the rolling update. This data can be used later to roll back
the change.

Rollback: Reverting to a previous state after an update

Get a list of previous rolling updates like so:

kubectl rollout history deployment/<deployment name>

Use the --revision flag to get more information on a specific revision:

kubectl rollout history deployment/<deployment name> --revision=<revision number>

You can rollback to the state before last revision with kubectl rollout undo:

kubectl rollout undo deployment.vl.apps/<deployment name>

Or use the --to-revision flag to roll back to a specific earlier revision:

kubectl rollout undo deployment.vl.apps/<deployment name> --to-revision=<revision number>

You can control certain aspects of the rollingUpdate strategy in the deployment spec:

17

https://v1-12.docs.kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-deployment
https://v1-12.docs.kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-back-a-deployment

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
strategy:
rollingUpdate:

maxSurge: 3

maxUnavailable: 2

replicas: 3
selector:
matchLabels:

app: nginx

template:
metadata:

labels:
app: nginx

spec:

containers:

- name: nginx
image: nginx:1.7.9
ports:

- containerPort: 80

spec.strategy.rollingUpdate.maxSurge: This represents the maximum number of extra replicas (above
the deployment’s normal replica count) that can be created, at a time, during arolling update. spec.strategy.rollir
This sets the maximum number of replicas that can be unavailable, at a time, during a rolling update.

Jobs and Cronjobs

Documentation:

* Jobs - Run to Completion
* Cronjob

* Running Automated Tasks with a Cronjob

Job: Creates one or more pods to do work and ensures that they successfully finish
This job calculates 2000 digits of pi. When it is done, the container will exit:
apiVersion: batch/vl

kind: Job

metadata:
name: pi

18

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

spec:
template:
spec:
containers:
- name: pi
image: perl
command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
restartPolicy: Never
backoffLimit: 4

You can use kubectl get with Jobs:

kubectl get jobs

Cronjob: Executes jobs on a schedule

This Cronjob runs the job specified by the jobTemplate, according to the schedule specified by the cron
expression in schedule:

apiVersion: batch/vlbetal
kind: CronJob
metadata:
name: hello
spec:
schedule: "*x/1 x x * x"
jobTemplate:
spec:
template:
spec:
containers:
- name: hello
image: busybox
args:
- /bin/sh
- -c
- date; echo Hello from the Kubernetes cluster
restartPolicy: OnFailure

You can use kubectl get with Cronjobs:

kubectl get cronjobs

19

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Services and Networking

Services

Documentation

« Services

* Using a Service to Expose Your App

Service: An abstraction layer which provides network access to a dynamic, logical set of pods

An example of a service:

kind: Service
apiVersion: vl
metadata:
name: my-service
spec:
type: ClusterIP
selector:
app: MyApp
ports:
- protocol: TCP
port: 8080
targetPort: 80

+ type: Sets the service type

selector: Selector used to determine which pods are included in the service
* ports.port: The port that the service listens on

* ports.targetPort: The port which traffic is forwarded to on the pods

Service types

* ClusterIP: Service is exposed within the cluster using its own IP address, and can be located via the
cluster DNS using the service name

+ NodePort: Service is exposed externally on a listening port on each node in the cluster

+ LoadBalancer: Service is exposed via a load balancer created on a cloud platform:

* The cluster must be set to work with a cloud provider in order to use this option.

20

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

+ ExternalName: Service does not proxy traffic to pods, but simply provides DNS lookup for an exter-
nal address:

* This allows components within the cluster to look up external resources in the same way they
look up internal ones: through services.

NetworkPolicies

Documentation:
* Network Policies

NetworkPolicy: Uses label selectors to select pods and define network access rules around those pods

A sample NetworkPolicy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: test-network-policy
spec:
podSelector:
matchLabels:
app: MyApp
policyTypes:
- Ingress
- Egress
ingress:
- from:
- ipBlock:
cidr: 172.17.0.0/16
except:
- 172.17.1.0/24
- namespaceSelector:
matchLabels:
project: myproject
- podSelector:
matchLabels:
role: frontend
ports:
- protocol: TCP
port: 6379
egress:
- to:
- ipBlock:
cidr: 10.0.0.0/24

21

https://kubernetes.io/docs/concepts/services-networking/network-policies/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

ports:
- protocol: TCP
port: 5978

« podSelector: Defines the selector, which determines which pod the NetworkPolicy applies to

* policyTypes: Can contain Ingress, Egress, or both:

*+ This determines which type(s) of traffic the policy applies to, whether it'sincoming or outgoing
traffic.

Ingress rules

Ingress rules provide a whitelist for traffic coming in to the pod. Any traffic that does not match any of
the ingress entries will be blocked. Ingress rules specify a list of sources under from, as well as one or
more ports. In the above example, any traffic coming in to port 6379 on the pod would be allowed, as
long as it matches one of the 3 listed sources. All other traffic would be blocked.

Egress rules

Egress rules provide a whitelist for traffic coming out of the pod. Egress rules specify a list of destinations
under to, as well as one or more ports. In the above example, egress traffic will only be allowed if it going
to port 5978, and to an IP address that falls within the specified CIDR range.

To and From Selectors

Ingress and Egress rules use the same syntax to specify sources and destinations for traffic, under from
and to, respectively.

+ podSelector: This allows for specifying a pod selector. Traffic from/to pods matching the selector
will match the rule.

* namespaceSelector: This is similar a podSelector, but allows you to select one or more namespaces
instead. Traffic from any pods in the matched namespaces will match the rule. However, if you use
podSelector and namespaceSelector together, the matched pods must also reside in one of the
matched namespaces.

* ipBlock: This allows you to specify a range of IP addresses, using CIDR notation. Sources/destina-
tions that fall within the IP range will match the rule. You can also list IPs to exclude from the range
using except.

State Persistence

22

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

Volumes

Documentation:
* Volumes

Volumes: These provide storage to containers that is outside the container, and can therefore exist be-
yond the life of the container. Containers in a pod can share volumes, allowing them each to interact with
the same files.

A sample container with an emptyDir volume:

apiVersion: vl
kind: Pod
metadata:

name: volume-pod

spec:

containers:

- image: busybox
name: busybox
volumeMounts:

- mountPath: /tmp/storage
name: my-volume
volumes:

- name: my-volume
emptyDir: {}

emptyDir: Volumes are automatically deleted when the pod is removed from a node. They can be an
easy way to allow two containers to share storage, without need for more complex storage solutions.

PersistentVolumes and PersistentVolumeClaims

Documentation:

* Persistent Volumes

» Configure a Pod to Use a PersistentVolume for Storage

PersistentVolumes

PersistentVolume: An object which represents a storage resource available to the cluster - Just like a
Node represents CPU and memory resources, a PV (PersistentVolume) represents a storage resource.

23

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

kind: PersistentVolume
apiVersion: vl
metadata:
name: my-pv
spec:
storageClassName: local-storage
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
local:
path: "/mnt/data"

storageClassName: Defines the type of storage the PV represents

+ It can be used to create multiple types of storage resources for different needs such as fast,
slow, short-term, long-term, etc.

capacity: The amount of storage represented by this PV

« accessModes - Determines the manner in which the resource is mounted to containers
+ ReadWriteOnce means that only one container can mount the resource in read/write mode.

+ type: The above PV uses a hostPath type, which simply uses a directory on a node for storage.
Kubernetes supports many types of PVs, such as nfs, StorageQOS, etc.

PersistentVolumeClaims

PersistentVolumeClaim: A request for a storage resource, PVCs (PersistentVolumeClaims) provide an
abstraction layer between users (Pods) and Storage:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my-pvc
spec:
storageClassName: local-storage
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 512Mi

+ storageClassName: This specifies the storage class requested by the claim. The PVC itself will be
bound to a PV with a matching storageClassName and one or more matching accessModes. If no
such PV exists, the PVC will remain unbound.

24

Certified Kubernetes Application Developer (CKAD) Study Guide Linux Academy

+ accessModes: These are the access modes requested by the PVC.

* resources.requests.storage: This a resource request that specifies how much storage is required
by the PVC.

Use a PersistentVolumeClaim in a Pod

You can utilize storage resources in a Pod by creating a volume that references a PVC, and mounting it to
a container:

kind: Pod
apiVersion: vl
metadata:
name: my-pvc-pod
spec:
volumes:
- name: my-storage
persistentVolumeClaim:
claimName: my-pvc
containers:
- name: busybox
image: busybox
command: ["/bin/sh", "-c", "while true; do sleep 3600; done"]
volumeMounts:
- mountPath: "/mnt/storage"
name: my-storage

25

	Core Concepts
	Kubernetes API Primitives
	Creating Pods
	Namespaces
	Basic Container Configuration

	Configuration
	ConfigMaps
	SecurityContexts
	Resource Requirements
	Secrets
	ServiceAccounts

	Multi-Container Pods
	Understanding Multi-Container Pods
	Containers within a pod can interact with each other in various ways:
	Some common design patterns for multi-container pods are:

	Observability
	Liveness and Readiness Probes
	Container Logging
	Monitoring Applications
	Debugging
	kubectl get
	kubectl describe
	kubectl logs
	kubectl edit
	Export object yaml
	kubectl apply

	Pod Design
	Labels, Selectors, and Annotations
	Deployments
	Rolling Updates and Rollbacks
	Jobs and CronJobs

	Services and Networking
	Services
	Service types

	NetworkPolicies
	Ingress rules
	Egress rules
	To and From Selectors

	State Persistence
	Volumes
	PersistentVolumes and PersistentVolumeClaims
	PersistentVolumes
	PersistentVolumeClaims
	Use a PersistentVolumeClaim in a Pod

